Tóm tắt luận văn Một vài mở rộng của nguyên lý biến phân ekeland

  • Người chia sẻ :
  • Số trang : 41 trang
  • Lượt xem : 8
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Tóm tắt luận văn Một vài mở rộng của nguyên lý biến phân ekeland, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Một kết quả cổ điển trong giải tích chỉ ra rằng, một hàm f nửa liên tục dưới trên một tập compact X thì đạt cực tiểu trên tập đó. Nếu bỏ giả thiết X compact thì kết luận trên có thể không còn đúng nữa. Năm 1974, I.Ekeland phát biểu một nguyên lý gọi là nguyên lý biến phân Ekeland chỉ ra rằng nếu hàm f là nửa liên tục dưới và bị chặn dưới trong không gian metric đủ ta luôn tìm được một hàm nhiễu của hàm ban đầu sao cho hàm nhiễu này có cực tiểu toàn cục. Nếu hàm f là khả vi Gateaux và bị chặn dưới trong không gian Banach thì đạo hàm của f có thể làm nhỏ tùy ý. Hơn nữa, nếu f thỏa mãn điều kiện Palais-Smale thì f có cực tiểu. Nguyên lý biến phân Ekeland mở ra hướng nghiên cứu mới cho toán học và là một công cụ mạnh được ứng dụng hiệu quả trong các lĩnh vực: lý thuyết tối ưu, giải tích phi tuyến, giải tích đa trị,. Ngày nay, nguyên lý vẫn được rất nhiều nhà toán học quan tâm, nghiên cứu và mở rộng theo nhiều hướng: các ánh xạ đơn trị hoặc đa trị trong không gian lồi địa phương, trong không gian vectơ, trong không gian Banach. Mục đích của luận văn là trình bày lại một cách có hệ thống một số kết quả liên quan tới nguyên lý biến phân Ekeland cổ điển trong [2], [4], [10] và một vài mở rộng của nguyên lý này cho ánh xạ đa trị theo [5]. Đối với ánh xạ đa trị chúng ta sẽ dùng đối đạo hàm Clarke định nghĩa thông qua nón pháp tuyến Clarke được giới thiệu trong bài báo [8].