Tóm tắt Luận án Các hàm p; w q – Chỉnh hình và áp dụng

  • Người chia sẻ :
  • Số trang : 31 trang
  • Lượt xem : 9
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Các hàm p; w q – Chỉnh hình và áp dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Các hàm chỉnh hình giá trị véctơ là công cụ rất hữu ích trong việc nghiên cứu các lĩnh vực toán học khác, ví dụ như trong lý thuyết nửa nhóm một tham số hoặc trong lý thuyết phổ và các tính toán giải tích hàm. Ngay cả khi để chứng minh các định lý về các hàm chỉnh hình giá trị vô hướng, đôi lúc cũng rất hữu ích nếu ta xét các hàm với giá trị trong không gian Banach. Trong giải tích hàm, có thể nói rằng có hai cách tiếp cận chính với tính chất giải tích của các hàm giá trị véctơ thông qua các khái niệm hàm chỉnh hình yếu và chỉnh hình, trong đó khái niệm “yếu” là dễ kiểm tra hơn nhiều trong thực hành, ơ đây, hàm f : D —> F được gọi là chỉnh hình yếu nếu u o f là chỉnh hình với mọi ue F’, trong đó E, F là các không gian lồi địa phương và D là một miền (tập mở và liên thông) trong E. Ta biết rằng, một hàm chỉnh hình là chỉnh hình yếu. Vì vậy bài toán điíỢc đặt ra một cách tự nhiên là “Khi nào tính chất chỉnh hình của hàm f điíỢc quyết định nếu nó chỉnh hình yếu?”. Có thế nói người đầu tiên giải quyết bài toán này vào năm 1938 là Dunford [18]. Ong khẳng định rằng điều này xảy ra khi D cz c và F là một không gian Banach. Sau đó Grothendieck [25] mở rộng kết quả này khi F là tựa đầy đủ. Trong thực tế, điều này cũng đúng khi E và F là các không gian Hausdorff và E là khả metric [48, Théorème 1.2.10].