Tóm tắt Luận án Bài toán ổn định và ổn định hóa đối với một số lớp phương trình vi phân bậc phân số

  • Người chia sẻ :
  • Số trang : 27 trang
  • Lượt xem : 6
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Bài toán ổn định và ổn định hóa đối với một số lớp phương trình vi phân bậc phân số, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Giải tích bậc phân số với một lịch sử lâu dài như là một lĩnh vực toán học thuần túy. Trong vài thập kỷ trở lại đây, các phương trình vi-tích phân bậc phân số đã thu hút sự quan tâm của nhiều tác giả bởi các ứng dụng của chúng trong việc mô tả nhiều bài toán từ các mô hình thực tiễn. Có nhiều khái niệm đạo hàm bậc phân số. Trong số đó, đạo hàm theo nghĩa Caputo và đạo hàm Riemann-Liouville được sử dụng rộng rãi hơn do các tính chất đặc thù của chúng. Lý thuyết định tính các phương trình vi phân nói chung, lý thuyết ổn định nghiệm nói riêng, là một hướng nghiên cứu quan trọng trong lý thuyết điều khiển hệ thống, góp phần giải quyết nhiều vấn đề đặt ra trong thực tiễn. Đối với các hệ vi phân với bậc nguyên, hướng nghiên cứu về ổn định đã ghi nhận nhiều thành tựu quan trọng cả về lý thuyết và áp dụng. Tuy nhiên, đối với các hệ vi phân bậc phân số, các kết quả nghiên cứu về tính ổn định vẫn rất khiêm tốn. Khó khăn chính là các phương pháp và cách tiếp cận đã được phát triển cho lớp hệ vi phân bậc nguyên thường không còn hiệu lực, đặc biệt là đối với các hệ vi-tích phân bậc phân số trong các không gian vô hạn chiều. Nhiều vấn đề mở trong hướng nghiên cứu về lý thuyết định tính và dáng điệu tiệm cận nghiệm nói chung, tính ổn định và ổn định hóa nói riêng, đối với các hệ động lực mô tả bởi hệ phương trình vi-tích phân bậc phân số, cả trong trường hợp hữu hạn và vô hạn chiều, cần tiếp tục nghiên cứu và hoàn thiện.