Synthesis and study of microwave absorption of la1.5sr0.5nio4 dielectric/ferroferrimagnetic nanocomposite

  • Người chia sẻ :
  • Số trang : 28 trang
  • Lượt xem : 3
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Synthesis and study of microwave absorption of la1.5sr0.5nio4 dielectric/ferroferrimagnetic nanocomposite, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

In recent years, the electromagnetic radiation with the frequency in range of 1-100 GHz has great application in telecommunication, medical treatment, and military. In company with that electromagnetic radiation also brings problems such as: electromagnetic interference, health diseases. Therefore, developing absorbing materials, which has able to absorb electromagnetic radiation, have paid much attention in GHz frequency. Microwave absorption materials (MAM) helps to prevent electromagnetic interference issue, reduce the cross-section reflectivity, and ensure the security of electronic systems. Radar absorption materials (RAM) worked in frequency range of 8-12 GHz is widely used in military systems for stealth technology. Generally, the study on electromagnetic absorption material mainly focuses on three ways: (1) preventing reflectivity signal, (2) enhancing the absorbability of material, and (3) extending frequency range. The increase of loss tangent and absorption efficiency can be obtained if absorbing material can observe both electric and magnetic energy. Moreover, nanotechnology provides the other ways to fabricate absorption material in nanoscale for shielding. MAM with nano-size displays the improvement of absorption ability in comparison with micro-size. Nanotechnology also helps to make the light weight and thin absorbed layer. The microwave absorption ability of material can be determined by relative permeability (r), permittivity (r), and impedance matching between environment and material. The reflection loss (RL) is used to determine the quality of MAM via the formula: RL = 20log|(Z – Z0)/(Z + Z0)|, where Z = Z0(r/r)1/2 is the impedance of material, Z0 is the impedance of air. The maximum reflection loss can be obtained via two mechanisms: (i) the impedance of material equals to impedance of air, |Z| = Z0, which is so called Z matching; (ii) the thickness of absorbing layer satisfies the phase matching or quarter-wavelength condition (d = (2n+1)c/[4f(|r||r|)1/2], n = 0, 1, 2, ). Z matching normally achieves by balancing the permeability and permittivity values, r = r. It can be obtained by fabricating a composite of dielectric and ferrite materials. Recently, there are a lot of publications on MAM based on the nanocomposite of magnetic and dielectric materials in which the RL can be obtained below -50 dB. The RL of nanocomposite is much higher than that of traditional materials such as carbon black-C and carbonyl-Fe.