Sách hướng dẫn học tập xác suất thống kê

  • Người chia sẻ :
  • Số trang : 177 trang
  • Lượt xem : 9
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Sách hướng dẫn học tập xác suất thống kê, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Lý thuyết xác suất thống kê là một bộphận của toán học, nghiên cứu các hiện tượng ngẫu nhiên và ứng dụng chúng vào thực tế. Ta có thểhiểu hiện tượng ngẫu nhiên là hiện tượng không thểnói trước nó xảy ra hay không xảy ra khi thực hiện một lần quan sát. Tuy nhiên, nếu tiến hành quan sát khá nhiều lần một hiện tượng ngẫu nhiên trong các phép thửnhưnhau, ta có thểrút ra được những kết luận khoa học vềhiện tượng này. Lý thuyết xác suất cũng là cơsở đểnghiên cứu Thống kê – môn học nghiên cứu các các phương pháp thu thập thông tin chọn mẫu, xửlý thông tin, nhằm rút ra các kết luận hoặc quyết định cần thiết. Ngày nay, với sựhỗtrợtích cực của máy tính điện tửvà công nghệthông tin, lý thuyết xác suất thống kê ngày càng được ứng dụng rộng rãi và hiệu quảtrong mọi lĩnh vực khoa học tựnhiên và xã hội. Chính vì vậy lý thuyết xác suất thống kê được giảng dạy cho hầu hết các nhóm ngành ở đại học. Có nhiều sách giáo khoa và tài liệu chuyên khảo viết vềlý thuyết xác suất thống kê. Tuy nhiên, với phương thức đào tạo từxa có những đặc thù riêng, đòi hỏi học viên phải làm việc độc lập nhiều hơn, vì vậy cần phải có tài liệu hướng dẫn học tập của từng môn học thích hợp cho đối tượng này. Tập tài liệu “Hướng dẫn học môn toán xác suất thống kê” này được biên soạn cũng nhằm mục đích trên. Tập tài liệu này được biên soạn cho hệ đại học chuyên ngành Điện tử-Viễn thông theo đề cương chi tiết chương trình qui định của Học viện Công nghệBưu Chính Viễn Thông. Nội dung của cuốn sách bám sát các giáo trình của các trường đại học khối kỹthuật và theo kinh nghiệm giảng dạy nhiều năm của tác giả. Chính vì thế, giáo trình này cũng có thểdùng làm tài liệu học tập, tài liệu tham khảo cho sinh viên của các trường, các ngành đại học và cao đẳng khối kỹthuật. Giáo trình gồm 6 chương tương ứng với 4 đơn vịhọc trình (60 tiết): Chương I:Các khái niệm cơbản vềxác suất. Chương II: Biến ngẫu nhiên và các đặc trưng của chúng. Chương III:Véc tơngẫu nhiên và các đặc trưng của chúng. Chương IV:Luật sốlớn và định lý giới hạn. Chương V:.Thống kê toán học Chương VI: Quá trình ngẫu nhiên và chuỗi Markov. Điều kiện tiên quyết môn học này là hai môn toán cao cấp đại sốvà giải tích trong chương trình toán đại cương. Tuy nhiên vì sựhạn chếcủa chương trình toán dành cho hình thức đào tạo từ xa, do đó nhiều kết quảvà định lý chỉ được phát biểu và minh họa chứkhông có điều kiện để chứng minh chi tiết. Giáo trình được trình bày theo cách thích hợp đối với người tựhọc, đặc biệt phục vụ đắc lực cho công tác đào tạo từxa. Trước khi nghiên cứu các nội dung chi tiết, người đọc nên xem phần giới thiệu của mỗi chương đểthấy được mục đích ý nghĩa, yêu cầu chính của chương đó. Trong mỗi chương, mỗi nội dung, người đọc có thểtự đọc và hiểu được cặn kẽthông qua cách diễn đạt và chỉdẫn rõ ràng. Đặc biệt bạn đọc nên chú ý đến các nhận xét, bình luận đểhiểu sâu hơn hoặc mởrộng tổng quát hơn các kết quảvà hướng ứng dụng vào thực tế. Hầu hết các bài toán được xây dựng theo lược đồ: đặt bài toán, chứng minh sựtồn tại lời giải bằng lý thuyết và cuối cùng nêu thuật toán giải quyết bài toán này. Các ví dụlà đểminh hoạtrực tiếp khái niệm, định lý hoặc các thuật toán, vì vậy sẽgiúp người đọc dễdàng hơn khi tiếp thu bài học. Sau các chương có phần tóm tắt các nội dung chính và cuối cùng là các câu hỏi luyện tập. Có khoảng từ20 đến 30 bài tập cho mỗi chương, tương ứng vói 3 -5 câu hỏi cho mỗi tiết lý thuyết. Hệthống câu hỏi này bao trùm toàn bộnội dung vừa được học. Có những câu kiểm tra trực tiếp các kiến thức vừa được học nhưng cũng có những câu đòi hỏi học viên phải vận dụng một cách tổng hợp và sáng tạo các kiến thức đểgiải quyết. Vì vậy việc giải các bài tập này giúp học viên nắm chắc hơn lý thuyết và kiểm tra được mức độtiếp thu lý thuyết của mình. Tuy rằng tác giả đã rất cốgắng, song vì thời gian bịhạn hẹp cùng với yêu cầu cấp bách của Học viện, vì vậy các thiếu sót còn tồn tại trong giáo trình là điều khó tránh khỏi. Tác giảrất mong sự đóng góp ý kiến của bạn bè đồng nghiệp, học viên xa gần và xin cám ơn vì điều đó. Cuối cùng chúng tôi bày tỏsựcám ơn đối với Ban Giám đốc Học viện Công nghệBưu Chính Viễn Thông, Trung tâm Đào tạo Bưu Chính Viễn Thông 1 và bạn bè đồng nghiệp đã khuyến khích động viên, tạo nhiều điều kiện thuận lợi đểchúng tôi hoàn thành tập tài liệu này.