Phương pháp ước lượng xác suất thứ cấp dựa trên lý thuyết Entropy cực đại trong ứng dụng nén dữ liệu

  • Người chia sẻ :
  • Số trang : 6 trang
  • Lượt xem : 15
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Phương pháp ước lượng xác suất thứ cấp dựa trên lý thuyết Entropy cực đại trong ứng dụng nén dữ liệu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Mô hình hóa dữ liệu và mã hóa là hai quá trình quan trọng nhất của nén dữ liệu. Mã hóa được thực hiện tối ưu và hiệu quả với mã hóa số học. Tuy nhiên không thể tính toán mô hình tối ưu cho một nguồn dữ liệu cho trước. Bài báo sẽ giới thiệu phương pháp ước lượng xác suất thứ cấp. Trong đó mỗi mô hình sơ cấp ước lượng xác suất bit tiếp theo là bit 1 hoặc bit 0 một cách độc lập. Các xác suất ước lượng được kết hợp lại với nhau bằng phương pháp tương tự như mạng nơtron. Sau khi bit được mã hóa, bộ ước lượng được cập nhật theo hướng tối thiểu chi phí mã hóa thay vì theo hướng giảm sai số dự đoán.