Luận văn Dưới vi phân của hàm lồi và ứng dụng trong tối ưu hóa không trơn
- Người chia sẻ :
- Số trang : 63 trang
- Lượt xem : 3
- Lượt tải : 500
- Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại
Bạn đang xem trước 20 trang tài liệu Luận văn Dưới vi phân của hàm lồi và ứng dụng trong tối ưu hóa không trơn, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên
Mục đích của luận văn này là trình bầy một số cách tiếp cận để nghiên cứu các điều kiện cần và đủ cho việc tồn tại nghiệm của bài toán (2). Như chúng ta đã biết trong giáo trình giải tích cổ điển, ngay cả trong R1nhiều hàm f lồi không khả vi tại điểm x nào đó thuộc (a; b), vì vậy rất khó xấp xỉ các hàm số này tại lân cận của x bởi một hàm tuyến tính. Khi đó ta không có được các điều kiện cần và đủ tối ưu cho bài toán tối ưu như đối với các hàm khả vi. Những năm 60 của thế kỷ XX, Rockafellar đã xây dựng lý thuyết dưới vi phân cho lớp hàm lồi và ý tưởng cơ bản của lý thuyết này là xấp xỉ hàm lồi tại điểm cho trước bằng cả một tập hợp có tính chất khá đẹp được gọi là tập dưới vi phân thay vì chỉ có một hàm tuyến tính như trong trường hợp khả vi. Các tập dưới vi phân chứa các thông tin về các điều kiện cần và đủ tối ưu cho các bài toán tối ưu liên quan đến các hàm này. Đây là một vấn đề khó nhưng có nhiều ứng dụng trong thực tế. Chính vì lẽ đó mà tác giả đã chọn đề tài: ” Dưới vi phân của hàm lồi và ứng dụng trong tối ưu hoá không trơn” . Luận văn được chia làm 2 chương. Chương I: Dưới vi phân. Trong chương I, tác giả trình bày các kiến thức cơ bản về dưới vi phân như: định nghĩa, các tính chất và các phép toán về dưới vi phân. Chương II: Điều kiện tồn tại nghiệm tối ưu. Trong chương II, tác giả trình bày một cách chi tiết các điều kiện tối ưu cấp 1 và cấp 2 đối với hai loại bài toán tối ưu không trơn là bài toán tối ưu không ràng buộc và bài toán tối ưu có ràng buộc và có sự so sánh với bài toán tối ưu trơn. Bản luận văn được hoàn thành dưới sự hướng dẫn tận tình của GS.TS Trần Vũ Thiệu. Tác giả hi vọng rằng một phần kiến thức nhỏ trong luận văn sẽ là tài liệu tham khảo cho các bạn sinh viên đại học, cao đẳng, những người làm toán quan tâm và yêu thích đề tài này.