Luận văn Các số tổ hợp liên quan đến số các phân hoạch

  • Người chia sẻ :
  • Số trang : 87 trang
  • Lượt xem : 9
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Luận văn Các số tổ hợp liên quan đến số các phân hoạch, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Tổ hợp như là một lĩnh vực của toán học rời rạc, xuất hiện vào đầu thế kỷ 17 bằng một loạt các công trình nghiên cứu của các nhà toán học xuất sắc như Pascal, Fermat, Leibnitz, Euler. Mặc dù vậy, tổ hợp vẫn là lĩnh vực mờ nhạt và ít được chú ý tới trong quãng thời gian hơn hai thế kỷ. Tình thế bắt đầu đổi khác khi xuất hiện các máy tính và cùng với nó là sự phát triển của toán hữu hạn. Hiện nay lý thuyết tổ hợp được áp dụng trong nhiều lĩnh vực khác nhau như lý thuyết số, hình học hữu hạn, quá trình ngẫu nhiên, thống kê xác suất,. Hướng nghiên cứu của luận văn là xây dựng các số tổ hợp cơ bản được hình thành từ kết quả của một số bài toán đếm. Chúng tôi xét bài toán phân hoạch tập hợp hữu hạn cùng với các điều kiện được đặt thêm vào. T rên cơ sở đó luận văn đi đến một số kết quả mới về các số tổ hợp có liên quan đến số các phân hoạch. Luận văn được chia làm 4 chương: Chương 1: Một số bài toán đếm và các số tổ hợp. Chương này nhắc lại một số quy tắc và bài toán đếm cơ bản. Thông qua một số bài toán đếm, luận văn xây dựng các số tổ hợp cơ bản. Hơn nữa, thông qua bài toán phân hoạch tập hợp, chúng tôi tìm được các số tổ hợp mới cũng như mối liên hệ giữa các số tổ hợp cơ bản đã biết với các số tổ hợp mới. Chương 2: Phương pháp đếm dùng hàm sinh. Nội dung chính của chương là giới thiệu phương pháp đếm dùng hàm sinh thông thường và hàm sinh mũ. Với phương pháp này, luận văn giải quyết một số bài toán đếm cũng như thiết lập được công thức tính cho các số tổ hợp quan trọng (số xáo trộn tổng quát Dn , số Fibonaci Fn , số Bell Bn ,.). Hơn nữa, chúng tôi cũng đưa ra hàm sinh mũ cho các số tổ hợp mới vừa tìm được trong Chương 1. Chương 3: Một số phương pháp và kỹ thuật đếm cơ bản khác. Chúng tôi giới thiệu thêm hai phương pháp đếm cơ bản: Phương pháp đếm bằng nguyên lý bao hàm và loại trừ và phương pháp đếm bằng công thức ngược. Với các phương pháp đếm này, chúng tôi thiết lập công thức tính cho các số tổ hợp Dn , S n,k (số Stirling loại hai) và xây dựng công thức hàm Euler. Chương 4: Dãy nhị thức. Sau khi trình bày sơ lược về dãy nhị thức, chúng tôi chứng minh một số dãy các đa thức được trình bày trong Chương 2 là dãy nhị thức