Luận án Bài toán ổn định và ổn định hóa đối với một số lớp phương trình vi phân bậc phân số
- Người chia sẻ :
- Số trang : 95 trang
- Lượt xem : 7
- Lượt tải : 500
- Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại
Bạn đang xem trước 20 trang tài liệu Luận án Bài toán ổn định và ổn định hóa đối với một số lớp phương trình vi phân bậc phân số, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên
Giải tích bậc phân số với một lịch sử lâu dài như là một lĩnh vực toán học thuần túy. Trong vài thập kỉ trở lại đây, các phương trình vi-tích phân bậc phân số đã thu hút sự quan tâm của nhiều tác giả bởi các ứng dụng của chúng trong việc mô tả nhiều bài toán từ các mô hình thực tiễn [32, 38, 42, 54, 61]. Có nhiều khái niệm đạo hàm bậc phân số. Trong số đó, đạo hàm theo nghĩa Caputo và đạo hàm Riemann-Liouville được sử dụng rộng rãi hơn do các tính chất đặc thù của chúng. Chẳng hạn, đạo hàm Caputo có nhiều tính chất quen thuộc, thích nghi với phép biến đổi Laplace và thuận lợi hơn trong việc biểu diễn nghiệm của các phương trình vi phân bậc phân số khi biết điều kiện đầu. Gần đây, các phép tính giải tích bậc phân số được nhiều tác giả phát triển và vận dụng trong nghiên cứu định tính các hệ phương trình vi phân và điều khiển bậc phân số [29, 37, 83]. Lý thuyết định tính các phương trình vi phân nói chung, lý thuyết ổn định nghiệm nói riêng, là một hướng nghiên cứu quan trọng trong lý thuyết điều khiển hệ thống, góp phần giải quyết nhiều vấn đề đặt ra trong thực tiễn ứng dụng từ cơ học, vật lý, hóa học, công nghệ thông tin đến các mô hình trong sinh thái học quần thể, kinh tế và môi trường. Đối với các hệ vi phân bậc nguyên, hướng nghiên cứu về ổn định nghiệm đã ghi nhận nhiều thành tựu quan trọng cả về lý thuyết và ứng dụng. Tuy nhiên, đối với các hệ vi phân bậc phân số, các kết quả nghiên cứu về tính ổn định vẫn rất khiêm tốn. Khó khăn chính là các phương pháp và cách tiếp cận đã được phát triển cho lớp hệ vi phân bậc nguyên thường không còn hiệu lực, đặc biệt là đối với các hệ vi-tích phân bậc phân số trong các không gian vô hạn chiều. Chính vì vậy, vấn đề nghiên cứu tính ổn định và ứng dụng trong các bài toán điều khiển đối với lớp hệ vi phân bậc phân số đang là một chủ đề thu hút sự quan tâm rất lớn từ cộng đồng các nhà nghiên cứu trong và ngoài nước.
