Khóa luận Tìm hiểu về tích phân Lebesgue và không gian Lp

  • Người chia sẻ :
  • Số trang : 60 trang
  • Lượt xem : 7
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Khóa luận Tìm hiểu về tích phân Lebesgue và không gian Lp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Tích phân Lebesgue xuất hiện vào thế kỷ XX nhằm giải quyết một vài nhược điểm của tích phân Riemann, chẳng hạn hàm Dirichlet là hàm đơn giản nhưng không khả tích Riemann. Có một điều thú vị về ý tưởng xây dựng hai loại tích phân này. Hai loại tích phân này được xây dựng dựa trên hai cách nhìn khác nhau về hàm số: Bernhard Riemann nhìn hàm số bắt đầu từ miền xác định còn Henri Lebesgue nhìn hàm số từ tập giá trị. Khóa luận của em nhằm tìm hiểu cách xây dựng tích phân Lebesgue và các lớp hàm khả tích Lebesgue cũng như có những so sánh với các kết quả đã học trong tích phân Riemann. Khóa luận được chia thành hai chương. Trong Chương 1, em trình bày cách thức xây dựng tích phân Lebesgue từ độ đo Lebesgue, hàm đo được Lebesgue rồi tích phân Lebesgue và hàm khả tích Lebesgue. Trong chương này có khái niệm hội tụ hầu khắp nơi và hội tụ theo độ đo là sự mở rộng của khái niệm hội tụ điểm và hội tụ đều. Em đã đưa vào các ví dụ cho thấy sự khác nhau giữa các khái niệm hội tụ này. Phần gần cuối chương có đề cập đến các kết quả quan trọng về việc chuyển giới hạn qua dấu tích phân của Beppo Levi, Pierre Fatou, đặc biệt của Henri Lebesgue về hội tụ chặn. Em đưa ví dụ cho thấy kết quả đã học ở Giải tích về việc chuyển giới hạn qua dấu lấy tích phân được mở rộng thực sự. Kết thúc chương này là kết quả về mối quan hệ giữa tích phân Lebesgue và tích phân Riemann.