Đề tài Phương pháp không cổ điển giải số phương trình vi phân bậc nhất và bậc hai

  • Người chia sẻ :
  • Số trang : 74 trang
  • Lượt xem : 8
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Đề tài Phương pháp không cổ điển giải số phương trình vi phân bậc nhất và bậc hai, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Phương trình vi phân là mô hình mô tả khá tốt các quá trình chuyển động trong tự nhiên và kĩ thuật. Để nghiên cứu phương trình vi phân, người ta thường tiếp cận theo hai hướng: nghiên cứu định tính và giải số. Mặc dù đã có lịch sử phát triển hàng trăm năm, do còn nhiều bài toán cần giải quyết, giải số phương trình vi phân thường vẫn thu hút sự quan tâm mạnh mẽ của các nhà toán học và các nhà nghiên cứu ứng dụng. Trong giải số phương trình vi phân, người ta thường cố gắng tìm ra những phương pháp hữu hiệu bảo đảm sự hội tụ, tính ổn định và tính chính xác cao. Để làm được điều này, người ta thường tổ hợp các phương pháp đa bước để nhận được các phương pháp mới có bậc hội tụ, tính ổn định và cấp chính xác cao hơn. Phương pháp không cổ điển giải số phương trình vi phân thường bậc nhất và bậc hai do M. V. Bulatov (và Berghe) đề xuất trong vòng năm năm trở lại đây nằm trong hướng này.