Đề tài Ứng dụng của phương pháp GAUSS

  • Người chia sẻ :
  • Số trang : 20 trang
  • Lượt xem : 7
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Đề tài Ứng dụng của phương pháp GAUSS, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Môn phương pháp số (Numerical methods) hay còn gọi là Giải tích số (Numerical analysí), Phương pháp tính (Computational methods) và rộng hơn là Toán học tính toán (Computational mathematics, Numerical mathematics) là một khoa học nghiên cứu cách giải gần đúng, mà chủ yếu là giải bằng số ( nói gọn là giải số) các phương trình, các bài toán xấp xỉ hàm số và các bài toán tối ưu hóa ( Theo Bách khoa toàn thư về khoa học và kỹ thuật, NXB Mc.graw Hill 1992). Nói cách khác để thể hiện bản chất hơn, như trong lời giới thiệu bộ sách “Cẩm nang giải tích số” (Handbook of Numerical analysis) gồm 3 tập do các chuyên gia hàng đầu thế giới viết từ 1989 đến 1994 (Cỉalet P.G và Lión J.L chủ biên), Giải tích số là một phần của tóan học mô tả và phân tích các lược đồ số được sử dụng trên máy vi tính. Mục tiêu của nó là nhận được biểu diễn rõ ràng, chính xác và trung thực tất cả các thông tin chữa đựng trong các mô hình toán học. Nó là sự mở rộng tự nhiên của các công cụ cổ điển như lời giải giải tích, các biến đổi đặc biệt, giải tích hàm cũng như giải tích ổn định và tiệm cận. Nói có thể gọn hơn môn phương pháp số nghiên cứu các phương pháp giải các bài toán bắng số trên máy tính. Với mục tiêu và nhiệm vụ như vậy, phương pháp số và máy tính là một công cụ đắc lực trong việc nghiên cứu các đối tượng, các quá trình tự nhiên và xã hội. Như ta biết, để nghiên cứu các hiện tượng tự nhiên và xã hội, chẳng hạn các hiện tượng như mây, mưa, gió, nhiệt độ, áp suất, các quá trình thủy văn như dòng chảy, lũ lụt .; hiện tượng biến dạng, nứt nẻ của vật rắn .thay vì các mô hình vật lý, người ta xây dựng mô hình toán học của các hiện tượng này và nghiên cứu nó. Chính giải tích số hay phương pháp số thực hiện công đoạn nghiên cứu các phương pháp, thuật toán sử lý các mô hình toán học trên máy tính. Chính nó là cơ sở để xây dựng các phần mềm khoa học – mô phỏng máy tính của các đối tượng vật lý.