Luận văn Nghiên cứu, xây dựng thuật toán giải bài toán tìm đường đi ngắn nhất với dữ liệu mờ dạng khoảng chuyên ngành: Hệ thống thông tin

  • Người chia sẻ :
  • Số trang : 87 trang
  • Lượt xem : 7
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu, xây dựng thuật toán giải bài toán tìm đường đi ngắn nhất với dữ liệu mờ dạng khoảng chuyên ngành: Hệ thống thông tin, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Trong những năm gần đây, các phương pháp tối ưu hoá ngày càng được áp dụng sâu rộng và hiệu quả vào các ngành giao thông vận tải, mạng viễn thông, kinh tế, kỹ thuật, công nghệ thông tin và các ngành khoa học khác. Các phương pháp tối ưu là công cụ đắc lực giúp người làm quyết định có những giải pháp tốt nhất về định lượng và định tính. Một trong những lớp bài toán tối ưu đầu tiên được nghiên cứu là thuật toán giải bài toán tìm đường đi ngắn nhất có trọng số xác định. Bài toán tìm đường đi ngắn nhất là vấn đề quan trọng trong lý thuyết đồ thị, nó đã được nghiên cứu từ lâu và có nhiều ứng dụng trong nhiều ngành khoa học nói chung, khoa học máy tính và hệ thống thông tin nói riêng. Nhiều giải thuật (Dijkstra, Bellman-Ford, Floyd.) đã được phát triển để tìm đường đi ngắn nhất và ngày nay đã được nhiều nhà nghiên cứu nhằm cải tiến xây dựng giải thuật giải bài toán tìm đường đi ngắn nhất với dữ liệu mờ dạng khoảng. Bài toán tìm đường đi ngắn nhất cũng được phát triển rộng rãi và trở thành một chuyên ngành toán học từ những năm 1950. Giải đáp những câu hỏi đặt ra mà tìm đường đi ngắn nhất với các cạnh có trọng số xác định. Có một số thuật toán tìm đường đi ngắn nhất; ở đây, ta có thuật toán do E. Dijkstra, nhà toán học người Hà Lan, đề xuất năm 1959. Trong báo cáo này mà tôi sẽ trình bày, người ta giả sử đồ thị là vô hướng các trọng số là dương. Chỉ cần thay đổi đôi chút là có thể giải được bài toán tìm đường đi ngắn nhất trong đồ thị có hướng. Phương pháp của thuật toán Dijkstra là: Xác định tuần tự đỉnh có khoảng cách đến u0 từ nhỏ đến lớn. Nhưng câu hỏi cần đặt ra là nếu trọng số đã cho được biểu diễn là một cung mở thuộc khoảng ( a,b) thì sao? Nếu trọng số có khoảng nằm ở đường biên trái thì có thể các phương án là chấp nhận được