Luận văn Tóm tắt Nghiên cứu ứng dụng lý thuyết tập thô trong trích chọn dữ liệu

  • Người chia sẻ :
  • Số trang : 27 trang
  • Lượt xem : 8
  • Lượt tải : 500
  • Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại

NHẬP MÃ XÁC NHẬN ĐỂ TẢI LUẬN VĂN NÀY

Nếu bạn thấy thông báo hết nhiệm vụ vui lòng tải lại trang

Bạn đang xem trước 20 trang tài liệu Luận văn Tóm tắt Nghiên cứu ứng dụng lý thuyết tập thô trong trích chọn dữ liệu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên

Ngày nay, phát hiện tri thức (Knowledge Discovery) và khai phá dữ liệu (Data mining) là lĩnh vực nghiên cứu đang phát triển mạnh mẽ. Khai phá dữ liệu được sử dụng với những cái tên như là sự thăm dò và phân tích bằng cách tự động hoặc bán tự động của một số lượng lớn dữ liệu theo một thứ tự để tìm kiếm được những mẫu có ích hoặc các luật. Mặc khác, trong môi trường cạnh tranh khốc liệt như hiện nay, người ta ngày càng cần có nhiều thông tin với tốc độ nhanh để trợ giúp việc ra quyết định và ngày càng có nhiều câu hỏi mang tính chất định tính cần phải trả lời dựa trên một khối lượng dữ liệu khổng lồ đã có. Với những lý do như vậy dẫn tới sự phát triển một khuynh hướng kỹ thuật mới đó là kỹ thuật phát hiện tri thức và khai phá dữ liệu (Knowledge Discovery and Data ming – KDD) Lý thuyết tập thô được nhà logic học Balan Zdzislak Pawlak giới thiệu vào đầu những năm 80 [20] được xem như là một cách tiếp cận mới để phát hiện tri thức. Nó cung cấp một công cụ để phân tích, trích chọn dữ liệu từ các dữ liệu không chính xác để phát hiện ra mối quan hệ giữa các đối tượng và những tiềm ẩn trong dữ liệu. Nó cho ta m ột cách nhìn đặc biệt về mô tả, phân tích và thao tác dữ liệu cũng như một cách tiếp cận đối với tính không chắc chắn và không chính xác của dữ liệu. Mục đích của lý thuyết tập thô là sự phân loại của dữ liệu ở dạng bảng biểu gọi là hệ thông tin. Mỗi hàng biểu diễn một đối tượng (object), mỗi cột biểu diễn một thuộc tính. Nó cung cấp một hệ thống trợ giúp phân loại tập dữ liệu, rút trích các thông tin hữu ích từ tập dữ liệu Với việc áp dụng lý thuyết tập thô vào việc trích chọn dữ liệu giúp làm giảm đi mức độ đồ sộ của hệ thống dữ liệu, giúp chúng ta có thể nhận biết trước loại dữ liệu được xử lý.