Tóm tắt Luận án Điều kiện tốii ưu cho bài toán cân bằng vectơ dưới ngôn ngữ của đạo hàm tiếp liên
- Người chia sẻ :
- Số trang : 133 trang
- Lượt xem : 6
- Lượt tải : 500
- Tất cả luận văn được sưu tầm từ nhiều nguồn, chúng tôi không chịu trách nhiệm bản quyền nếu bạn sử dụng vào mục đích thương mại
Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Điều kiện tốii ưu cho bài toán cân bằng vectơ dưới ngôn ngữ của đạo hàm tiếp liên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD LUẬN VĂN ở trên
Bài toán cân băng vectơ (vector equilibrium problem) có vai trò quan trọng trong giải tích phi tuyến và được quan tâm nghiên cứu nhiều trong thời gian gần đây bao gồm các nghiên cứu về sự tồn tại nghiệm, cấu trúc tập nghiệm, độ nhạy nghiệm, điều kiện tối ưu và thuật toán tìm nghiệm do phạm vi áp dụng rộng rãi của nó, chẳng hạn, xem Anh [1], [2]; Ansari [3], [4], [5], [6]: Bianchi [11], [12]: Feng-Qin [18]: Khanh-Tung [45], [46]; Luu [56], [57], [59], [62], [63]: Su [72], [73); Tan [75], [76], [77], [78],v.v. Bài toán cân bằng vectơ là một sự mở rộng từ bài toán cân bằng vô hướng được giới thiệu lần đầu tiên vào năm 1994 bởi Bhnn và Oettli [10], và nó bao hàm được nhiều bài toán khác nhau như trường hợp đặc biệt, chẳng hạn bài toán bất đẳng thức biến phân vectơ, bài toán tối ưu vectơ, bài toán cân bằng Nash vectơ, bài toán bù vectơ, v.v. về điều kiện tối ưu cho các loại nghiệm hữu hiệu của bài toán cân bằng vectơ hiện nay là một chủ đề quan trọng cần được quan tâm nghiên cứu, chẳng hạn, Lun [54], [59], [60] dẫn các điều kiện tối ưu cấp một và cấp hai kiểu Fritz John và Karush-Kuhn-Tucker cho nghiệm hữu hiệu yếu địa phương của bài toán cân bằng vectơ không trơn có ràng buộc tập, đẳng thức và bất đẳng thức và một số áp dụng cho bài toán tối ưu vectơ và bất đẳng thức biến phân vectơ; Feng và Qiu [18] nghiên cứu điều kiện tối im của bài toán cân bằng vectơ có ràng buộc trong không gian Banach: Gong [26], [27] thu được điều kiện tối líu cho nghiệm hữu hiệu yếu, hữu hiệu Henig, hữu hiệu toàn cục và siêu hữu hiệu của các bài toán cân bằng vectơ khả vi và lồi tổng quát cùng với một số áp dụng cho bài toán bất đẳng thức biến phân vectơ và bài toán tối mi vectơ